Problem 8

Sketch the region in the plane consisting of all points (x, y) such that

$$
|x-y|+|x|-|y| \leq 2
$$

Solution

The aim in this problem is to consider portions of the $x y$-plane, one by one, for which this inequality simplifies to one that can be solved. Specifically, the $x y$-plane will be partitioned into the four quadrants as well as above and below the line $y=x$.

Quadrant 1

Within this quadrant, $x \geq 0$ and $y \geq 0$. Below the line, $y \leq x$, or $x-y \geq 0$.

$$
\begin{gathered}
|x-y|+|x|-|y| \leq 2 \\
(x-y)+(x)-(y) \leq 2 \\
2 x-2 y \leq 2 \\
x-y \leq 1 \\
y \geq x-1
\end{gathered}
$$

Above the line, $y \geq x$, or $x-y \leq 0$.

$$
\begin{gathered}
|x-y|+|x|-|y| \leq 2 \\
-(x-y)+(x)-(y) \leq 2 \\
-x+y+x-y \leq 2 \\
0 \leq 2
\end{gathered}
$$

This is a true statement regardless of what x and y are, so all points on and above the line $y=x$ satisfy the conditions.

Quadrant 2

Within this quadrant, $x \leq 0$ and $y \geq 0$ and $y \geq x$, or $x-y \leq 0$.

$$
\begin{gathered}
|x-y|+|x|-|y| \leq 2 \\
-(x-y)+(-x)-(y) \leq 2 \\
-x+y-x-y \leq 2 \\
-2 x \leq 2 \\
x \geq-1
\end{gathered}
$$

Quadrant 3

Within this quadrant, $x \leq 0$ and $y \leq 0$. Below the line, $y \leq x$, or $x-y \geq 0$.

$$
\begin{gathered}
|x-y|+|x|-|y| \leq 2 \\
(x-y)+(-x)-(-y) \leq 2 \\
x-y-x+y \leq 2 \\
0 \leq 2
\end{gathered}
$$

This is a true statement regardless of what x and y are, so all points on and below the line $y=x$ satisfy the conditions.

Above the line, $y \geq x$, or $x-y \leq 0$.

$$
\begin{gathered}
|x-y|+|x|-|y| \leq 2 \\
-(x-y)+(-x)-(-y) \leq 2 \\
-x+y-x+y \leq 2 \\
2 y-2 x \leq 2 \\
y-x \leq 1 \\
y \leq x+1
\end{gathered}
$$

Quadrant 4

Within this quadrant, $x \geq 0$ and $y \leq 0$ and $y \leq x$, or $x-y \geq 0$.

$$
\begin{gathered}
|x-y|+|x|-|y| \leq 2 \\
(x-y)+(x)-(-y) \leq 2 \\
x-y+x+y \leq 2
\end{gathered}
$$

$$
2 x \leq 2
$$

$$
x \leq 1
$$

Superimpose all of these graphs to get all of the points in the $x y$-plane that satisfy the original inequality.

